09/07/2025

Actualités > Emploi > Offre de thèse
PhD position – Soliton gas within 1D quantum gases

Laboratoire : LPL - Laboratoire de Physique des Lasers
Lieu : Université Sorbonne Paris Nord
Salaire : 2200€
Référent : aurelien.perrin@univ-paris13.fr

Durée : 36 mois

Date de début : 6 octobre 2025

Le groupe des condensats de Bose-Einstein du Laboratoire de Physique des Lasers (CNRS/Université Sorbonne Paris Nord) est expert dans la physique des gaz quantiques hors. Nous offrons un poste de doctorant pour travailler sur le projet sodium, où nous produisons des gaz quantiques dégénérés au sommet d’une puce atomique. La géométrie extrêmement allongée du piège offerte par la conception de la puce permet d’atteindre le régime unidimensionnel.


L’objectif du projet de doctorat est de démontrer la présence de solitons dans des gaz de Bose unidimensionnels à faible interaction à température finie ou suite à une excitation dynamique. Le gaz peut être décrit par une fonction d’onde, ou de manière équivalente par une densité et une phase. Un soliton correspond à un appauvrissement local de la densité qui se propage dans le gaz sans dispersion. La présence de solitons dans le système peut être révélée par imagerie directe ou par la forme de la distribution de vitesse du gaz. L’objectif de ce projet de thèse est d’étudier la dynamique hors équilibre d’un gaz de Bose en interaction faible confiné dans une boîte sous forte excitation, et de mettre en évidence la présence de solitons dans le gaz. Bien que le projet soit principalement expérimental, il peut également inclure des simulations numériques de ces phénomènes.

  • Le campus de l’Université Sorbonne Paris Nord est situé à moins de 30 minutes du centre de Paris.
  • L’équipe est actuellement composée d’un doctorant, d’un post-doctorant et de trois chercheurs.
  • Le laboratoire héberge quatre autres expériences d’atomes ultra-froids et divers projets de physique dont des projets fondamentaux et des applications. Des ateliers d’électronique, de mécanique et d’optique soutiennent nos activités.

15/05/2025

Actualités > Emploi > Offre de post-doc
Postdoctoral position in quantum gases

Laboratoire : LPL - Laboratoire de Physique des Lasers
Lieu : Université Sorbonne Paris Nord
Référent : Laurent Vernac : laurent.vernac@univ-paris13.fr

Durée : 15 mois

Date de début : 1er septembre 2025

Le groupe Gaz quantiques magnétiques (GQM) du LPL offre un poste postdoctoral dans le domaine
de l’expérience des gaz quantiques dipolaires utilisant des atomes de chrome. Les atomes magnétiques, qui peuvent être chargés dans des réseaux optiques dans un état de faible entropie, constituent une plate-forme très pertinente pour l’étude du magnétisme quantique. L’équipe d’accueil étudie la dynamique hors équilibre des systèmes de spin à longue portée interagissant avec, et cherche en particulier à mesurer le développement de l’enchevêtrement lié au phénomène de la thermalisation quantique. La personne recrutée contribuera d’abord à l’assemblage de la nouvelle chambre d’expérience UHV, et à l’installation du nouveau système de refroidissement et de piégeage par laser. Elle jouera un rôle prépondérant dans l’obtention d’un BEC, puis dans son chargement dans un réseau optique, et mettra en place les nouveaux outils prévus par l’équipe pour obtenir de nouveaux résultats sur la physique des systèmes à N-corps en interaction : optique adaptative, pour explorer de nouvelles géométries de piégeage ; bobines RF dans le vide pour mieux contrôler les transitions RF ; mesure du champ magnétique au voisinage des atomes par spectroscopie.

Deux enseignants-chercheurs, un chercheur du CNRS et un ingénieur de recherche du CNRS sont impliqués dans le projet. Nous avons établi des collaborations fructueuses avec des théoriciens pour l’interprétation de nos résultats.

Le candidat doit avoir une solide expérience des expériences sur les atomes froids, en particulier dans le domaine de l’optique et des interactions lumière-matière.

Probing Coherences and Itinerant Magnetism in a Dipolar Lattice Gas, Thomas Lauprêtre et al,
arXiv:2501.11402 (2025)
Measuring bipartite spin correlations of lattice-trapped dipolar atoms, Youssef Aziz Alaoui et
al, Phys. Rev. Lett. 133, 203401 (2024)

26/02/2025

Actualités > Emploi > Offre d'emploi permanent
Ingénieur-chercheur – Capteurs Inertiels à Atomes Froids

Laboratoire : ONERA
Lieu : Palaiseau

Un poste d’ingénieur-chercheur permanent est ouvert dans l’unité DPHY/SLM de l’ONERA. Ce poste est lié aux développements de capteurs inertiels à base d’atomes froids.

Missions :

L’équipe Sources Laser et Métrologie (SLM) du DPHY est en charge du développement des techniques de métrologie optique et atomique, ainsi que de leur mise en œuvre dans des prototypes instrumentaux de validation. Pour cela, des études sont menées avec différents niveaux de maturité : allant de la recherche instrumentale exploratoire en laboratoire jusqu’à l’emport des instruments sur différents porteurs (avion ou autre), la réalisation de campagnes de mesures et le traitement des données associées.

Le poste est dédié aux activités de DPHY/SLM liées aux développements de capteurs inertiels. 
Ces instruments sont basés sur l’utilisation conjointe de capteurs commerciaux et de capteurs développés spécifiquement par des ingénieurs et techniciens l’unité, à base d’une technologie d’interférométrie atomique (technologie quantique basée sur l’interaction de lumière avec des atomes, maîtrisée par l’équipe depuis une quinzaine d’années). Ces instruments sont mis en œuvre lors de campagnes de mesures.

Dans ce contexte vos missions seront les suivantes :

  • Vous managerez des projets en cours et à participer au montage de nouvelles propositions d’études. Une implication technique forte sera demandée pour le traitement et l’analyse des données issues de l’ensemble des instruments lors des campagnes de mesures (co-traitement des données issues du capteur à atomes froids et des données provenant d’autres capteurs).
  • Vous participerez également à l’intégration des instruments dans les porteurs et leur mise en œuvre lors de campagnes de mesures aéroportées régulières (2 – 3 semaines /an).
    Une participation technique est à prévoir pour les phases de conception, de réalisation (en particulier au niveau du pilotage informatique, de la co-intégration avec des capteurs inertiels ou autre capteurs commerciaux) et de tests des systèmes inertiels.
  • Vous contribuez à la valorisation de l’ensemble de ces travaux en développant des interactions avec la communauté académique et universitaire ainsi qu’avec les acteurs industriels.
  • Vous serez attaché au rayonnement scientifique à travers des publications et des participations aux congrès de la thématique.

Enfin, vous vous investissez dans le développement des activités de l’équipe SLM en participant à des encadrements de stages et de thèse, ainsi que dans le montage et la réalisation de différents projets

Vos missions sont conditionnées par l’obtention d’une habilitation de Défense nationale.

Profil :

Ingénieur ou Docteur et vous possédez de fortes compétences en traitement de données et pilotage d’instruments (Maîtrise Python, Labview, Matlab).

Vous justifiez d’une première expérience dans le domaine des mesures inertielles et technique GNSS serait un plus.

Vous avez une capacité à travailler en équipe multi-disciplinaire autour d’un projet fédérateur.

Vous avez une forte appétence pour la gestion de projet (organisation, suivi, rédaction de rapports et propositions techniques, interactions avec les clients et donneurs d’ordre).

Vous avez un goût prononcé pour la mise en pratique de concepts innovants et fondamentaux dans un but applicatif, à travers notamment la participation à des campagnes de mesures aéroportées.

Vous avez de bonnes capacités rédactionnelles en français et anglais (cahiers des charges, rapports techniques).

03/02/2025

Actualités > Emploi > Offre d'emploi permanent
Enseignant·e chercheur·e en métrologie quantique

Laboratoire : LCM-LNE CNAM
Lieu : 61, rue du Landy, 93210 LA PLAINE-SAINT-DENIS

Poste susceptible d’être vacant

Un poste de Maître de Conférences en Métrologie Quantique, est susceptible d’être prochainement ouvert au concours, au Conservatoire National des Arts et Métiers de Paris (sections CNU 30, 63).

Thématique de recherche : étude d’une méthode quantique (par exemple : optomécanique quantique, conversion paramétrique optique..) pour la mise en pratique d’une unité du SI parmi celles (kelvin, kilogramme, mètre, candela) matérialisées au LCM LNE Cnam (EA2367,contact : gael.obein@lecnam.net).

Enseignements en licence, master, ingénieur, en majorité dans la spécialité Instrumentation-Mesure du Cnam (contact : stephan.briaudeau@lecnam.net). »

09/12/2024

Actualités > Emploi > Offre de post-doc
Postdoctoral position in quantum inertial sensing with cold atoms

Laboratoire : ONERA / LCM LNE-Cnam
Référent : Malo CADORET and Yannick BIDEL

Our research group focusses on harnessing the wave-like properties of cold atoms to realize quantum inertial sensors based on cold atom interferometry for real-word applications such as gravity mapping or navigation.


Our team is at the international forefront in developing cold atom gravimeters for onboard applications [1-3]. Currently, we are working on the development of a compact and complete hybridized cold atom
inertial measurement unit (IMU). Our goal is to have a single atomic sensor that will alternately measure each inertial component (3 accelerations and 3 rotations), instead of having six independent atomic sensors each measuring one inertial component. Every atomic measurement will be hybridized with its corresponding classical sensor in order to benefit from the advantages of both technologies.
To date, our experimental setup can measure the vertical and the horizontal accelerations with hybridized cold-atom interferometric sensors [4-5]. We are looking for an experienced researcher to aid the ongoing development of the compact cold atom gyroscope [6] of the IMU. The postdoc project aims to push further the development the metrological characterization of the cold atom gyroscope in terms of sensitivity, long-term stability and accuracy. Additionally, the technique of Bloch oscillations will be implemented on the setup to increase the performance of the cold atom gyroscope.

Responsabilities:

  • Development of the cold atom gyroscope using Bloch oscillations.
  • Develop simulations to predict the performance of the sensor.
  • Work with Ph.D. students and other members of the group.
  • Actively participate in the publication of research results in high-quality scientific journals and their
    presentation at national and international conferences

Qualifications:

  • Ph.D. in physics
  • Strong background in cold atom interferometry.
  • Experience with cold atom experiments.
  • Experience with simulation software.
  • Ability to work effectively in a team.

[1] Y. Bidel, N. Zahzam, C. Blanchard, A. Bonnin, M. Cadoret, A. Bresson, D. Rouxel, and M-.F. Lalancette. « Absolute marine gravimetry with matter-wave interferometry ». Nature Communications, 9, 02 2018
[2] Y. Bidel, N. Zahzam, A. Bresson, C. Blanchard, M. Cadoret, A. V. Olesen, and R. Forsberg. « Absolute Airborne Gravimetry with a Cold Atom Sensor ». Journal of Geodesy, 94, 02 2020.
[3] Y. Bidel, N. Zahzam, A. Bresson, C. Blanchard, A. Bonnin, J. Bernard, M. Cadoret, et al. « Airborne Absolute Gravimetry With a Quantum Sensor, Comparison With Classical Technologies ». Journal of Geophysical Research : Solid Earth, 128, 4, 04 2023.
[4] I. Perrin, J. Bernard,Y. Bidel, A. Bonnin, N. Zahzam, C. Blanchard, A. Bresson, and M. Cadoret. Zero-velocity atom interferometry using a retroreflected frequency-chirped laser. Phys. Rev. A 100, 053618, 2019.
[5] J. Bernard, Y. Bidel, M. Cadoret, C. Salducci, N. Zahzam, S. Schwartz, A. Bonnin, C. Blanchard and A. Bresson ”Atom interferometry using σ+ − σ− Raman transitions between |F = 1,mF = ∓1⟩ and |F =2,mF =±1⟩” Physical Review A, vol. 105, p. 033318, 2022
[6] Clément Salducci, Yannick Bidel, Malo Cadoret, Sarah Darmon, Nassim Zahzam, Alexis Bonnin, Sylvain Schwartz, Cédric Blanchard and Alexandre Bresson « Stabilizing classical accelerometers and gyroscopes with a quantum inertial sensor» arXiv:2405.13689 2024.

The position is available starting from the beginning of 2025, and the initial appointment is for one
year, renewable. The salary is based on French regulations.


Interested candidates may contact Malo CADORET (malo.cadoret@lecnam.net) or Yannick
BIDEL (yannick.bidel@onera.fr)
as soon as possible. The application should contain a CV, a list of
publications, a short research statement (cover letter)
, and contact information for two senior
researchers who can provide recommendation letters.

26/11/2024

Actualités > Emploi > Offre de stage
Master internship : Synthesis and functionalization of high-quality nanodiamond particles for the development of a new generation of quantum nanotechnologies

Laboratoire : IRCP
Lieu : Jussieu, 11 rue Pierre et Marie Curie
Référent : Mary De Feudis

This internship is part of the NanoG4V project, funded by the French National Research Agency (ANR),
and which includes funding for a PhD position. This research work aims to produce a new generation
of high-quality quantum-grade nanodiamonds for a wide range of applications, such as extreme-conditions sensing, nanoscale thermometry and live-cell dual-color imaging. This work will enable the student to acquire multidisciplinary skills in materials and plasma science, high-pressure physics, with a special focus on the development of quantum diamond nanotechnologies. The student will join the CQSD group of the MPOE team at the IRCP institute and will work closely with internationally renowned researchers from the LSPM and LuMIn laboratories.

Keywords: quantum technologies, nanodiamonds, SiV color centers, CVD synthesis, matter, optics.

Scientific description: Diamond is an extremely interesting material due to its various technological applications. Its compact and regular crystalline structure allows it to be used in diverse scientific fields, such as particle sensors and power electronics devices [1]. More recently, with the advancement of diamond synthesis techniques, new opportunities have arisen for quantum applications on the micro-and nanometric scales, such as in high-pressure and biomedical physics. This internship focuses on the synthesis of diamond nanoparticles via chemical vapor deposition (CVD), incorporating SiV color centers. The SiV center is a point defect in the diamond lattice, consisting of an interstitialsilicon atom (Si) and two adjacent vacancies (V) [2]. This defect introduces energy levels into diamond’s bandgap, which behave similarly to the energy levels of an isolated atom. When subjected to external perturbations (pressure, temperature, etc.), these energy levels shift. By detecting this shift, it is possible to measure the perturbation causing it. Thus, the SiV center can act as a sensor at a nanometric spatial scale. The crystalline quality of the diamond nanoparticles will be crucial for fully exploiting the quantum properties of the SiV center. Nanodiamonds will be produced using high-power, microwave-assisted plasma CVD with an H2/CH4 gas mixture, Fig. 1 [3, 4].

During the internship, the CVD technique will be used to enable the homogeneous nucleation of particles in the gas phase and their doping by Si. Introducing a silicon wafer into the plasma chamber will bring solid-source Si impurities, forming SiV centers in the particles. The optical properties of SiV centers in nanodiamonds will be characterized by photoluminescence measurements and enhanced through novel post-synthesis treatments developed with the intern (such as specialized high-temperature and high-pressure annealing, plasma oxygen surface treatments, etc.). This new generation of high-quality quantum particles will be tested as high-pressure nanosensors and nanoscale thermometers, surpassing current results [5]. The intern will mainly work in the CQSD group, which offers an international environment alongside other PhD students, post-doctoral and permanent researchers.

Techniques/methods in use: CVD diamond synthesis, optical characterization (Raman and PL spectroscopy at room and low temperatures), surface characterization (SEM, among others), and plasma simulations.


Applicant skills: The intern should demonstrate aptitude for experimental work and a strong interest in material physics and chemistry. Skills in simulations and calculations are appreciated. Dynamism and determination are essential qualities for this research activity.


Industrial partnership: No.
Internship supervisor(s): Mary De Feudis (PI of the NanoG4V project), mary.de.feudis@chimieparistech.psl.eu Fabien Bénédic (co-supervisor) fabien.benedic@lspm.cnrs.fr

Internship location: Institut de recherche de Chimie Paris (Paris 75005) and Laboratoire des Sciences
des Procédés et des Matériaux (Villetaneuse 93430).


Internship duration: 6 months, expected start in March 2025 (to be defined with the student).
Possibility for a doctoral thesis: Yes. This internship can be followed by a PhD thesis (36-month long)
depending on the candidate work. The PhD thesis is already funded by the ANR (NanoG4V project).

References
[1] M. De Feudis, PhD Thesis, University of Salento (Italy) and University of Sorbonne Paris Nord (France), 2018.
[2] C. Becher, et al., Materials for Quantum Technology 3 (1) 2023, p. 012501.
[3] M. De Feudis, et al., Advanced Materials Interfaces 7 (2) 2019, 1901408.
[4] A. Tallaire, et al., ACS Appl. Nano Mater. 2 (9) 2019, p. 5952-5962.
[5] B. Vindolet, et al., Physical Review B 106 (21) 2022, p. 214109.

21/11/2024

Actualités > Emploi > Offre de post-doc
Post-Doctoral position in Ultracold Quantum Matter TheoryCenter for Theoretical Physics, Ecole Polytechnique

Laboratoire : Centre de Physique Théorique (CPHT)
Lieu : École Polytechnique
Référent : Laurent SANCHEZ-PALENCIA

The Ultracold Quantum Matter theory group lead by Prof. Laurent Sanchez-Palencia at the Center
for Theoretical Physics in Ecole Polytechnique (France, Paris region) invites applications for a postdoctoral position on the theory of ultracold quantum matter. The position is for two years with possible extension, starting in autumn 2025.


Research at the Ultracold Quantum Matter group
The group conducts cutting-edge theoretical research on ultracold quantum gases, quantum simulation, and quantum information theory in correlated quantum matter. In recent years, the group has made pioneering contributions on the quantum simulation of bosonic quasicrystals, including studies of localization and fractality [ Yao et al. , PRL 2019], Bose-glass physics in 1D quasiperiodic systems [ Yao et al. , PRL 2020], 2D quasicrystals [ Gautier et al. , PRL 2021; Zhu et al. , PRL 2023], and twisted moiré systems [ Johnstone et al. (2024)]. On the other hand, we develop research on quantum information theory applied to many-body quantum systems and out-of-quilibrium dynamics of correlated quantum matter, with recent contributions to information spreading in systems with long-range interactions [ Cevolani et al. , PRB 2018; Schneider et al. , PRR 2021], quantum quench spectroscopy [ Villa et al. , PRA 2019; PRA 2020; PRA 2021], as well as entanglement entropy and modular Hamiltonians [ Schneider et al., PRB 2022]. Further information may be found on the group webpage.


Research profile
The hired post-doctoral researcher is expected to develop a research programme in one of these topics, co-supervise Master and/or PhD students, and participate actively to the team work. We look for candidates with up to five-year experience after PhD. Strong education in Theoretical Physics and successful research experience in the physics of correlated quantum systems and/or quantum information theory is expected. Expertise in advanced numerical techniques, such as tensor network approaches or quantum Monte Carlo, will be highly appreciated. Strong personal motivation, abilities to work in team and guide students, as well as strong communication skills are expected.


Application procedure
Applications should be sent to Prof. Laurent SANCHEZ-PALENCIA (lsp@cpht.polytechnique.fr). The application documents should include a Curriculum Vitae (with date of birth, e-mail address, complete academic and professional carrer), academic certificates, a complete publication list, a concise research statement, and two reference letters.


Dates
Deadline for application : January 5, 2022
Decision : end of March 2025
Expected starting date : September/October 2025 (may be adapted

20/11/2024

Actualités > Archives > Emploi > Offre de stage
Internship/PhD : Quantum Approach to Optical Super-Resolution

Laboratoire : Laboratoire Kastler Brossel (LKB)
Lieu : Sorbonne Université, Jussieu / Collège de France
Référent : Nicolas Treps : nicolas.treps@lkb.upmc.fr

It was long believed that the ultimate resolution limit in imaging was dictated by the Rayleigh criterion, which states that two point sources are indistinguishable when their images overlap excessively. This diffraction limit, often considered a fundamental barrier in conventional imaging systems, posed a significant challenge for resolving closely spaced objects. However, recent advances in quantum metrology have revealed that the Rayleigh limit is not a fundamental boundary [1]. Employing non-conventional imaging techniques, inspired by quantum metrology, it is possible to achieve super-resolution imaging, surpassing the classical resolution limits [2,3]. One such approach is pursued in the PESto experiment at LKB, where Spatial Mode Demultiplexing (SPADE) is used. The light from two point sources is demultiplexed into a basis of Hermite-Gaussian spatial modes. Detecting and counting photons in each spatial mode of the multimode light, the distance between the two point sources is estimated with a precision approaching the quantum limit [4], order of magnitudes better than the Raileigh limit.

In practical imaging scenarios, multiple parameters must often be estimated simultaneously, making the problem more complex [5]. Notably, the SPADE technique is only quantum-optimal when only one parameter is to be estimated, and the others, such as the centroid of the source distribution, the relative intensity between the sources 0r even the number of sources, are known. This PhD project aims to extend the capabilities of SPADE to more realistic scenarios, incorporating multi-parameter estimation, low-flux detection down to the single photon level, and the effects of environmental factors such as optical turbulence. Addressing these complexities requires the integration of machine-learning techniques to optimize the choice of spatial modes, extract multiple parameters from the data efficiently, and ensure robustness against experimental imperfections. Additionally, in scenarios involving dynamic or moving sources—where only limited information can be gathered in real-time—a Bayesian approach to estimation will be explored to track the sources effectively.

This research will focus on advancing super-resolution imaging in realistic conditions, providing solutions to the challenges of multi-parameter estimation and developing methods to handle experimental imperfections and source motion. By working on both experiment and theory, leveraging estimation theory -classical and quantum-, machine learning and Bayesian techniques, the goal is to achieve unprecedented imaging precision and pave the way to a new paradigm in imaging.

[1] Tsang, M., Nair, R., & Lu, X. M. (2016). Quantum theory of superresolution for two incoherent optical point sources. Physical Review X, 6(3), 031033.
[2] Gessner, M., Treps, N., & Fabre, C. (2023). Estimation of a parameter encoded in the modal structure of a light beam: a quantum theory. Optica, 10(8), 996-999.
[3] Sorelli, M. Gessner, M. Walschaers, and N. Treps, Quantum limits for resolving Gaussian sources, Phys. Rev. Research 4, L032022 (2022).
[4] Rouvière, C., Barral, D., Grateau, A., Karuseichyk, I., Sorelli, G., Walschaers, M., & Treps, N. (2024). Ultra-sensitive separation estimation of optical sources. Optica, 11(2), 166-170.
[5] Řehaček, J., Hradil, Z., Stoklasa, B., Paúr, M., Grover, J., Krzic, A., & Sánchez-Soto, L. L. (2017). Multiparameter quantum metrology of incoherent point sources: towards realistic superresolution. Physical Review A, 96(6), 062107.
[6] C. Fabre and N. Treps, Modes and States in Quantum Optics, Rev. Mod. Phys. 92, 035005 (2020).

31/10/2024

Actualités > Archives > Emploi > Offre de post-doc
Post-doctoral position: diamond-based electronic and quantum devices

Laboratoire : LSPM
Lieu : 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse
Salaire : 3000 - 4200
Référent : fabien.benedic@lspm.cnrs.fr / jocelyn.achard@lspm.cnrs.fr

Missions
The recruited person will participate in various ongoing projects within the Diamond and Carbon Materials (DCM) team focusing on the integration of diamond layers in devices for power electronics (PEPR Électronique FrenchDiam) and quantum technologies (ANR projects TRAMPOLINE and SINFONIA). These projects require, initially, to master the process of developing single crystal diamond layers doped with boron, for integration into vertical power components, and doped with nitrogen, for the creation of colored centers with quantum properties that can be exploited in different fields, notably in magnetometry. Secondly, the design of demonstrators using clean room technologies should make it possible to link the physicochemical and usage properties of diamond single crystals to the characteristics of electronic and quantum devices and to demonstrate the added value of diamond compared
to conventional materials.


Activities
The post-doctoral fellow will ensure the running of research projects by participating in the
various planned tasks, in particular:

  • Optimization of the process for producing single crystal diamond layers doped with boron
    and nitrogen;
  • Physico-chemical and microstructural characterization of the layers produced (SEM, optical
    microscopy, Raman spectroscopy, electrical measurements, ODMR, etc.);
  • Micro- and nano-manufacturing in clean rooms;
  • Characterization of the electronic and quantum demonstrators produced.
    Skills

Work context
The work will be carried out at the Process and Materials Sciences Laboratory, CNRS LSPM
UPR3407, on the Villetaneuse campus (University Sorbonne Paris Nord). The postdoctoral
fellow will work within the PPANAM axis (Plasma Processes, Nanostructures and Thin Films)
and more particularly the DCM Research operation (Diamond and Carbon Materials).
The position is located in a sector falling under the protection of scientific and technical
potential (PPST), and therefore requires, in accordance with regulations, that your arrival be
authorized by the competent authority of the MESR.

31/10/2024

Actualités > Archives > Emploi > Offre de stage
Master Internship in Ultra-precise Mid-Infrared Molecular Spectroscopy

Laboratoire : LPL
Lieu : USPN, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse
Référent : Mathieu Manceau : mathieu.manceau@univ-paris13.fr et Benoît Darquié : benoit.darquie@univ-paris13.fr

Looking for potential variations of the proton-to-electron mass ratio and other tests of fundamental physics via precision measurements with molecules

Internship Description:
The master student will participate in cutting-edge experiments aimed at ultra-precise measurements of rovibrational molecular transitions and dedicated to measuring/constraining the potential time variation of the proton-to-electron mass ratio (µ), a fundamental constant of the standard model (SM). Such variations, if detected, would be a signature of physics beyond the SM, providing insights into the nature of dark matter and dark energy. The idea here is to compare molecular spectra of cosmic objects with corresponding laboratory data. The experimental setup is based on quantum cascade lasers (QCLs) locked to optical frequency combs, with traceability to primary frequency standards, a breakthrough technology developed at Laboratoire de Physique des Lasers (LPL), allowing unprecedented spectroscopic precision in the mid-infrared range. This internship will focus on measuring mid-infrared molecular transitions of methanol (CH3OH), a molecule known for its enhanced sensitivity to changes in µ. The student will set up and stabilize a new QCL in a spectral region hosting particularly relevant transitions. The work will involve achieving sub-Doppler spectroscopic resolution to reach target laboratory frequency accuracies of ~100 Hz needed for comparisons with astronomical observations. This activity is part of the ANR Ultiµos project, a collaborative effort which seeks to refine current constraints on the possible variation of µ which involves leading research institutions, including Laboratoire Kastler Brossel (LKB, L. Hilico) and MONARIS (C. Janssen) at Sorbonne Université. The three partners of the Ultiµos consortium will collaborate to conduct measurements in methanol and other species such as ammonia (NH3) in different spectral windows, to identify transitions as targets for future Earth/space comparison campaigns, which
could further tighten constraints on variations of µ. Other collaborators, such as Vrije Universiteit Amsterdam and Onsala Space Observatory, will provide theoretical and observational/astronomical support to complement the experimental efforts. The proposed laser technology is also crucial for the ongoing development at LPL of a new-generation molecular clock specifically designed for precision vibrational spectroscopy of cold polyatomic molecules. The student may therefore be involved in first precise spectroscopic measurements on cold molecules produced at ~1 K in a novel cold molecule apparatus. Combining frequency metrology and cold molecule research as the potential to bring even
more stringent constraints on a drifting-µ, and opens possibilities for using polyatomic molecules to perform other fundamental tests, including the measurement of the energy difference between enantiomers of a chiral molecule, a signature of parity (left-right symmetry) violation, and a sensitive probe of dark matter. Keywords: fundamental constants, standard model, precision measurements, ultra-high-resolution spectroscopy, frequency metrology, quantum cascade lasers, frequency comb lasers, cold molecules, molecular physics, quantum physics, astrophysics, optics & lasers, vacuum, electronics, programming & simulation Relevant publications from the team: Tran et al, APL Photonics 9, 3, (2024); Fiechter et al, J Phys Chem Lett 13, 42 (2022); Santagata et al, Optica 6, 411 (2019); Cournol et al, Quantum Electron. 49, 288 (2019), arXiv:1912.06054; Tokunaga et al, New J. Phys. 19, 053006 (2017); Argence et al, Nature Photon. 9, 456 (2015), arXiv:1412.2207.

Requirements:

The applicant should be doing its master studies in a relevant area of experimental physics or chemical physics: atomic, molecular and optical physics, spectroscopy, lasers, quantum optics. Interested applicants should email a CV, a brief description of research interests and the contact details of 2 referents to M. Manceau (mathieu.manceau@univ-paris13.fr) and/or B. Darquié (benoit.darquie@univ-paris13.fr). Funding is already secured for a potential PhD following the internship